

Reg. No.:	
-----------	--

Name:.....

Eighth Semester B.Tech. Degree Examination, April 2016 (2008 Scheme) 08.805(4): GRAPH THEORY (Elective) (R) (Common with F-08.805 C)

Time: 3 Hours

Max. Marks:100

PART - A

Answer all questions. Each question carries 4 marks.

- 1. Explain the terms:
 - a) Null Graph
 - b) Complete Graph and
 - c) Pendant Vertex with examples.

- 4. Define a Metric and prove that distance is a metric.
- 5. Explain Planar Graph and show that K₅ is not planar.
- 6. Explain Center and radius of a tree.
- 7. Show that a graph can be embedded in the surface of a sphere if and only if it can be embedded in a plane.
- 8. Define $W_r \vee W_s$ and $W_r \cap W_s$.

Find $W_r \vee W_s$ and $W_r \cap W_s$ for the following graph.

3

10

5

6

9

- 9. What is meant by rank and nullity of a graph? What is their significance?
- 10. What is a unit cube? Give the graphical representation of it.

PART-B

Answer one question from each Module. One full question carries 20 marks.

Module-I

- 11. a) Define Euler Graph.
 - b) Prove that "a given connected graph is an Euler Graph if and only if all vertices of G are of even degree".
 - c) Consider the following weighted graph.

Find the minimal spanning tree of the graph using Kruskal's algorithm.

OR

- 12. a) Define Connected Graph and Components of a graph.
- b) Prove that "a simple graph with n vertices and k components can have at most (n - k) (n - k + 1)/2 edges".
 - c) Is it possible to have simple graphs with the following degree sequences? If yes, draw the graphs.
 - i) 2, 3, 3, 3, 3, 4, 5
 - ii) 1, 3, 3, 4, 5, 6, 6
 - iii) 1, 2, 3, 3, 4, 5, 6.

10

10

10

6

Module - II

13. a) Show that the number of labeled tress with n vertices is nⁿ⁻². 10 b) State and prove Euler Theorem. OR 14. a) What do you mean by geometric dual of a graph? Illustrate with examples. 10 b) A necessary and sufficient condition for two planar graphs G1 and G2 to be duals of each other is as follows: There is one-to-one correspondence between the edges in G1 forms a circuit if and only if the corresponding set in G2 forms a cut - set. Prove it geometrically (consider a graph with at least 6 vertices and 6 faces).

Module - III

15. a) Write an algorithm to find the fundamental circuits in a graph wer b) What is meant by contact network? Write notes on the analysis of contact networks.

OR

- 16. a) Explain Sequential Switching Networks. Explain the properties of State Graphs. 6
 - b) Find the transmission matrix for the following contact network.

c) Write and explain Djkstra's Algorithm.